
Smoothening of the time series
Smoothing.Rd
Smoothening of the time series
Examples
Smoothing(timeseries = StructuralDecompose::Nile_dataset[,1], breaks = c(4, 50, 80))
#> [1] 1124.7002 1120.0555 1115.7059 1111.6474 1107.8713 1104.3873 1101.1868
#> [8] 1098.2216 1095.4193 1092.7045 1090.0057 1087.2377 1084.3165 1081.2022
#> [15] 1078.0712 1075.6112 1069.9872 1062.6761 1054.0972 1044.8792 1035.0753
#> [22] 1024.7443 1014.1921 1003.6909 993.0625 981.6105 968.5932 953.7479
#> [29] 937.2038 919.7212 902.8152 887.8188 881.5851 876.3718 871.3876
#> [36] 866.6127 862.0841 857.7852 853.6761 849.7266 845.9306 842.3033
#> [43] 838.8655 835.6435 832.6302 829.7861 827.0713 798.9009 801.9204
#> [50] 805.3126 809.1336 813.3608 817.8961 822.6373 827.4037 831.9377
#> [57] 836.0001 841.8590 846.5545 849.2619 849.4481 847.4104 843.9194
#> [64] 839.6215 835.5942 832.3450 829.0320 825.4557 828.2389 830.8036
#> [71] 833.5662 836.8415 840.8017 845.5189 850.9551 857.0311 863.6528
Smoothing(timeseries = runif(n = 50, min = 1, max = 10), breaks = c(4, 20, 30))
#> [1] 2.313421 2.705953 3.107629 3.548202 4.011707 4.332521 4.600551 5.122456
#> [9] 5.661955 6.133703 6.418247 6.758350 7.084362 7.398836 7.707422 8.012496
#> [17] 8.313820 3.247915 3.548765 3.991920 4.990387 6.035141 6.400066 6.912285
#> [25] 7.353304 8.164710 8.899334