Smoothening of the time series
Smoothing.Rd
Smoothening of the time series
Arguments
- timeseries
Given time series
- frequency
Timeseries frequency, defaults to 12 points
- smoothening_algorithm
Smoothening algorithm required
- breaks
Breakpoints identified by the previous algorithm
- lowess
Lowess smoothener
Examples
Smoothing(timeseries = StructuralDecompose::Nile_dataset[,1], breaks = c(4, 50, 80))
#> [1] 1124.7002 1120.0555 1115.7059 1111.6474 1107.8713 1104.3873 1101.1868
#> [8] 1098.2216 1095.4193 1092.7045 1090.0057 1087.2377 1084.3165 1081.2022
#> [15] 1078.0712 1075.6112 1069.9872 1062.6761 1054.0972 1044.8792 1035.0753
#> [22] 1024.7443 1014.1921 1003.6909 993.0625 981.6105 968.5932 953.7479
#> [29] 937.2038 919.7212 902.8152 887.8188 881.5851 876.3718 871.3876
#> [36] 866.6127 862.0841 857.7852 853.6761 849.7266 845.9306 842.3033
#> [43] 838.8655 835.6435 832.6302 829.7861 827.0713 798.9009 801.9204
#> [50] 805.3126 809.1336 813.3608 817.8961 822.6373 827.4037 831.9377
#> [57] 836.0001 841.8590 846.5545 849.2619 849.4481 847.4104 843.9194
#> [64] 839.6215 835.5942 832.3450 829.0320 825.4557 828.2389 830.8036
#> [71] 833.5662 836.8415 840.8017 845.5189 850.9551 857.0311 863.6528
Smoothing(timeseries = runif(n = 50, min = 1, max = 10), breaks = c(4, 20, 30))
#> [1] 7.530115 7.235390 6.915934 6.570732 6.208344 5.852731 5.293361 4.679367
#> [9] 4.007346 3.295271 2.689716 2.582901 3.584005 4.315581 5.012974 5.758579
#> [17] 6.565607 4.243420 4.110548 3.845342 4.394352 5.418816 6.846615 8.466742
#> [25] 9.020588 8.640066 8.178374