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1 Abstract

The advent of GPT4 marks the emergence of large-scale AI applications, signaling a new era

in technological adoption. These systems, exemplified by ChatGPT, are beginning to perme-

ate various subsectors across various industries including law[47], medicine[19] and business

[28], potentially altering the social landscape and highlighting concerns about stability and

trust. [2],[34] This study explores the crucial relationship between explainability and user

trust in AI systems. By contrasting different types of explainability, including a novel ap-

proach involving interactive counterfactual explanations, we aim to determine how these

methods influence trust. Our findings suggest that interaction not only enhances trust but

that counterfactual explanations significantly boost the confidence users have in AI systems.

This paper builds on previous [10] research, which has shown that traditional feature-based

explanations often fall short, by investigating alternative forms of explainability that may

better satisfy the demands for user understanding and trustworthiness in AI.

2 Introduction

The rapid expansion of large language models like ChatGPT marks a significant evolution

in artificial intelligence, profoundly influencing society in diverse ways. Often, the most
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marginalized groups are disproportionately impacted, experiencing the greatest risks and

minimal benefits from AI advancements. [46] This stark inequality highlights the critical

need for models that are not just technically advanced but are also understandable and

trustworthy for all users, especially those most susceptible to negative implications.

Instances abound where the deployment of AI has raised concerns, such as in criminal

justice [15] and healthcare sectors [29], underscoring the urgency for more responsible AI

development. Despite these challenges, the momentum behind AI research continues un-

abated. Historical evidence suggests that attempting to decelerate the advancement of AI

technologies or any new technology is not feasible.[42]

A promising approach involves reframing AI development through a human-centered per-

spective, succinctly defined as Human-Centered Explainable AI [11], providing individuals

with the necessary tools to effectively engage with complex machine learning models. Cur-

rent explainability methods often adopt a one-size-fits-all strategy, utilizing tools like feature

importance scores and textual counterfactuals which may not suffice for all users. True com-

prehension of an AI system lies at the intersection of what users find trustworthy and what

experts believe is reliable.

Research indicates that interactivity and tailored explanations, such as counterfactual rea-

soning, enhance understandability,[39] [36] thereby fostering trust. These methods allow

users to see how different inputs affect outputs and to explore hypothetical alternatives,

offering a more transparent view of AI decision-making processes.

This paper expands on existing research by examining various explainability techniques to

establish a clear relationship between how AI systems explain their decisions and the trust

users have in them. By comparing different methods, we aim to identify the most effective

strategies that enhance both the transparency and reliability of AI outputs.

Furthermore, this introduction sets the stage for a deeper examination into which explainabil-

ity methods resonate most effectively with users. We explore the dynamics of user interaction

with AI explanations, advancing our understanding of how to increase transparency in AI
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to build trust.

3 Related Work

The field of Explainable Artificial Intelligence (XAI) has witnessed significant evolution, tran-

sitioning from developer-centric methods toward approaches that prioritize user engagement

and understanding.[30] [13] Initial XAI efforts highlighted technical transparency, utilizing

inherently interpretable models such as linear regressions and decision trees.[28] However,

as model complexity has increased, so has the necessity for advanced post-hoc exploratory

techniques. Zhu et al. have criticized the focus on developing new XAI algorithms at the

expense of usability and practical interpretability for real users [31].

3.1 Types of Explanations

XAI explanations are typically categorized as either local or global:

• Local explanations are designed to clarify the decision-making process for individual

instances, making them highly relevant to end users who prioritize understanding spe-

cific decisions over system-wide behaviors. [22] [9]

• Global explanations provide a comprehensive view of the model’s overall behavior,

but they may not address individual user concerns as effectively as local explanations.

Given our focus on individual decision-making, local explanations are more pertinent

to this study. [35]

Explanations can also be generated as either pre-hoc or post-hoc:

• Pre-hoc explanations are integrated into the model during its design and are less com-

plex but often less accurate than black box models.

3



• Post-hoc explanations are derived from fully trained models. These are crucial for

explaining ’black box’ AI systems, particularly at a local level, where they provide the

most value to end-users. [35] [7]

3.2 Categories of Post-hoc Explanations

Research typically categorizes post-hoc explanations into several types, including:

• Feature Importance Explanations (e.g., LIME, SHAP): These methods highlight how

each input feature impacts the model’s output, offering a straightforward approach to

understanding model decisions.[35]

• Simplification methods: These explanations show how minor modifications to input

data could lead to different outcomes, aligning with human tendencies to engage in

counterfactual thinking. [25]

• Example-based explanations: Interactive adjustments by users that demonstrate how

varying inputs alter outcomes, thereby enhancing user understanding and trust. [6]

3.3 Interactive Methods and Games

Recent studies have started to explore the use of interactive methods and games as dynamic

tools to assess and amplify the relationship between explainability and trust. [13] These

methods are believed to not only bolster user engagement but also deepen insights into how

different types of explanations affect user perception and confidence in AI systems. [48]

The consensus is that explainable AI models play a pivotal role in understanding AI sys-

tem decisions and enhancing user confidence and trust in these systems. Previous research

has indeed explored and substantiated the assumption that AI explainability positively im-

pacts trust.[27] [26] [31] Additionally, evidence suggests that counterfactual explanations,

due to their natural contrastive attributes aligning with human causal reasoning, offer a
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valuable means of explaining models. [25] [23] And that counterfactual explanations mixed

with interactive explanations can broaden the scope of explainability significantly.

Factors such as interactions, system communication, and the system’s mental model

are pivotal in decision-making tasks. However, to our current knowledge, the impact of

incorporating explanations into decision-making scenarios on trust in AI remains uncharted.

4 Research Questions

Based on the comprehensive review of the literature on AI trust and explainability discussed

in the previous section, we have formulated the following research questions to guide our

investigation into the relationship between trust and explainability in AI systems:

• Research Question 1 (RQ1): How do different types of AI explanations (e.g.,

example-based, rule-based)shape users’ initial impressions and perceived trust during

their interaction with the AI system?

• Research Question 2 (RQ2) What elements of these explanations are most influ-

ential in building or undermining users’ trust during their interactions with this AI

system?

These questions aim to empirically test the effects of different types of AI explanations on

user trust, further contributing to our understanding of how explainability can be effectively

implemented to foster greater acceptance and reliance on AI technologies.

5 Methods

We have developed a web-based game designed to test our hypotheses regarding AI explain-

ability in the context of loan approval processes. The game leverages a sophisticated AI

assistant that provides recommendations on loan approvals based on a set of defined crite-

ria, which players can either accept or reject. This experimental approach utilizes the loan
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approval game—a recognized method for evaluating AI explainability [33], incorporating

both demographic and monetary information.

5.1 Game Development

The game is structured as a web-based application, presenting players with fifteen scenarios

where decisions to approve or reject a loan must be made based on demographic data (gen-

der, geographical region, race, age) and five key monetary attributes (total loan amount,

repayment period, interest rate, credit score, and debt-to-income ratio). These attributes

have been identified as critical factors in determining loan approvals. On-screen, players are

shown all relevant information, along with the AI system’s recommendation for accepting or

rejecting each loan. After each decision, players receive feedback indicating whether their

choice was favorable. Furthermore, the AI provides explanations for its recommendations,

and if the model is interactive, players can request further clarifications through a text box

before proceeding to the next scenario. The primary objective of the game is to minimize

the approval of bad loans, with player performance quantified through a final score.

5.2 AI Development

To ensure robust decision-making, we employed a CatBoost tree-based classifier trained on

a dataset from the UCI machine learning repository [49], encompassing both demographic

and financial data. The dataset comprises 16 masked variables, including six continuous and

ten categorical variables, with the target variable indicating loan approval or disapproval.

5.2.1 Good AI System

The good AI system was trained to exclude demographic data from its decision-making

process, thereby eliminating potential biases. It achieved an accuracy of approximately 90%

on the training set, ensuring reliable and ethical decision-making.
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5.2.2 Bad AI System

In contrast, a flawed AI model was developed by randomizing 40% of the target variables in

the dataset, leading to a reduction in accuracy to 65%. This model serves as a control to

assess the impact of AI reliability on user trust and understanding, providing a comparative

measure against the more reliable system.

6 Measuring Trust

Trust is a complex, multifaceted concept extensively studied across various disciplines. Es-

tablishing trust between humans already presents numerous challenges, but fostering trust

between humans and artificial intelligence (AI) is essential for widespread AI adoption. Ac-

cording to research detailed in sources [1], [37], and [20], the factors influencing trust in

AI can be categorized into human-based, context-based, and technology-based dimensions.

Notably, context-based factors can even include inherent distrust of AI systems, such as the

skepticism surrounding AI in weapons systems noted in [21]. Trust is not static but evolves

continuously and dynamically, far beyond a one-time establishment [44].

Explainability is highlighted in sources [1] and [37] as a crucial component for building

trust, with [1] distinguishing between transparency and interpretability—both of which are

vital for fostering trust. Additional influential factors include an AI system’s perceived

empathy [4], [40], as well as non-technical aspects like privacy, fairness, and accountability.

From a technical perspective, characteristics such as safety, accuracy, and robustness are

highly valued, often viewed by users as essential guarantees of trust. Further research,

including sources [45] and [32], emphasizes a preference for accuracy over explainability

when establishing trust. Moreover, certain cybersecurity studies [43] suggest that increased

robustness in models also enhances trust, [43] also indicates that trust fundamentally stems

from the reliability and safety of the system.

Given the breadth of literature, there is a significant established link between trust and
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explainability in AI systems. This study will delve deeper into this relationship. While the

primary focus will be on explainability, other critical factors such as fairness, robustness,

and transparency can also be considered to ensure a comprehensive understanding of trust

dynamics in AI systems.

6.1 Trust Scales

There have been some measures that historically measured trust. [14] detailed one of the

earliest methods of looking at trust within an organization. [16] adapted trust scales from

[5]. Below we have the scale we are using to measure trust. We have marked the main idea

of the question in bold.

The scale consists of five items that participants respond to on a Likert-type scale ranging

from strongly disagree to strongly agree:

6.1.1 Description of the Scales

• Confidence: “I am confident in the [tool]. I feel that it works well.”

• Predictability: “The outputs of the [tool] are very predictable.”

• Reliability: “The tool is very reliable. I can count on it to be correct all the time.”

• Accuracy: “I feel safe that when I rely on the [tool] I will get the right answers.”

• Efficiency: “The [tool] is efficient in that it works very quickly.”

• Distrust: “I am wary of the [tool].” (Adapted from the Jian, et al. Scale and the

Wang, et al. Scale)

• Accuracy: “The [tool] can perform the task better than a novice human user.”

(Adapted from the Schaefer Scale)

• Preference for Decision Making: “I like using the system for decision making.”
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A copy of scales used is attached in the appendix.

7 Measuring Explainability

The concept of explainability within artificial intelligence (AI) models has evolved signifi-

cantly, driven by diverse measurement approaches. Scholarly contributions have elaborated

and quantified explainability through various methodologies. A comprehensive summariza-

tion of these methods is presented in [30], which summarizes twelve categories encapsulated

under the acronym COP-12, including Correctness, Completeness, Consistency, and others.

Additionally, [8] delineates explainability into two overarching categories: User Explana-

tion Satisfaction and System Explanation Satisfaction, simplifying the multifaceted nature

of explainability assessment. Further, [41] categorizes explainability according to different

philosophical and scientific paradigms, offering a multidisciplinary perspective on explain-

ability evaluation. Another segmentation [3] introduces explainability into five distinct cate-

gories, including Understandability and Comprehensibility. These explorations reveal a rich

tapestry of methodologies for measuring model explainability, underscoring varied perspec-

tives and criteria employed by researchers. Given the aim of our study—to assess whether

an increase in the quality of explanations enhances user trust—we focus on metrics that

directly relate to user perception of these explanations.

7.1 Explainability Scales

The development of scales to measure the explainability of AI models is still evolving, with

initial efforts informed by human-robot interaction studies [38]. A more refined scale is pre-

sented in [12], marking a significant advancement in the measurement of AI explainability.

Further enhancements are discussed in [18]; a detailed scale based on the SUS scale [24] illus-

trates ongoing improvements in this area. For our research, we employ the scale published in

[17], which builds upon the SUS scale and encompasses a broad spectrum of explainability
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aspects previously discussed.

7.2 Description of the Scale

The scale consists of several items that participants respond to on a Likert-type scale ranging

from strongly disagree to strongly agree:

• Assesses Understanding: ”From the explanation, I know how the [software, algo-

rithm, tool] works.”

• Measures Satisfaction: ”This explanation of how the [software, algorithm, tool]

works is satisfying.”

• Evaluates Detail:”This explanation of how the [software, algorithm, tool] works has

sufficient detail.”

• Tests Completeness:”This explanation of how the [software, algorithm, tool] works

seems complete.”

• Checks Usability:”This explanation of how the [software, algorithm, tool] works tells

me how to use it.”

• Assesses Utility:”This explanation of how the [software, algorithm, tool] works is

useful to my goals.”

• Accuracy:”This explanation show me how accurate the [software, algorithm, tool]

will be.”

A copy of the scale has been included in the appendix for reference.

8 Participants and Data Collection

Participants were recruited from a combination of college campuses and surrounding neigh-

borhoods to ensure a diverse mix of ages and backgrounds. The recruitment within college
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primarily targeted departments known for their technical curriculum, such as computer sci-

ence and data science, to ensure a baseline familiarity with technology among participants.

This approach aimed to provide a balanced cross-section of the population, reflecting varied

levels of AI competency and age. Power analysis was carried out to determine the optimal

number of participants

Participants were categorized into three age brackets and three levels of AI competency

as follows:

Age Brackets: Individuals were divided into three groups:

1. Young (18-25 years)

2. Middle-aged (26-45 years)

3. Older (46 years and above)

AI Competency Levels: Based on responses to a preliminary survey assessing famil-

iarity with and understanding of AI, participants were classified into:

1. Novice: Little to no prior experience or understanding of AI.

2. Intermediate: Moderate experience and understanding, likely from educational expo-

sure or casual use.

3. Expert: Extensive experience and understanding, typically from professional use or

advanced study in relevant fields.

8.1 Power Analysis

A power analysis was conducted to determine the required sample size to detect significant

effects with an alpha level of 0.01. The analysis indicated that a minimum sample size of

150 participants would be needed to achieve 80% power to detect a medium effect size in

the study design.
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9 Experimental Design

The study employs a 3x3x2 mixed factorial design to systematically examine the effects of

age, AI competency, and AI system quality on trust and user interaction outcomes. This

design facilitates the assessment of both main effects and interaction effects among the

three variables, providing a comprehensive analysis of how different factors influence user

perceptions and behaviors with AI systems.

9.1 Factors Involved

9.1.1 Age Brackets (3 levels)

Young (18-25 years), Middle Aged(26 -45 years), Older(46 years and above)

9.1.2 AI Competency Levels (3 levels)

Novice, Intermediate and Expert

9.1.3 AI System Type (2 levels)

Good AI: Characterized by high reliability and accuracy and Bad AI: Characterized by lower

reliability and accuracy.

Participants are randomly assigned to one of the nine combinations of age brackets and

AI competency levels, ensuring a balanced distribution across all categories. Within these

groups, each participant interacts with both types of AI systems (Good and Bad) in a

counterbalanced order to control for any order effects and to ensure that each participant’s

experience with one type of AI does not influence their perceptions of the other.

9.2 Variable Definitions

9.2.1 Two Types of AI Systems

• Good AI (high accuracy)
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• Bad AI (low accuracy)

9.2.2 Four Levels of Explainability

• No explanation

• Basic explanation (feature importance)

• Detailed explanation (contextual information)

• Interactive explanation (allows user queries)

9.2.3 Independent Variables

• AI System Type (Within-Subjects): Participants interact with both the Good

AI and the Bad AI systems. The order of interaction is counterbalanced to control for

order effects and fatigue.

• Level of Explainability (Between-Subjects): Each participant is randomly as-

signed to one of four explanation conditions and remains in that condition throughout

the study.

9.2.4 Dependent Variable

• Trust: Measured using a standardized scale after interactions with each AI system.

This captures shifts in trust based on the AI type and the level of explainability

provided.

10 Procedure

Upon recruitment, participants are first briefed about the study’s objectives and the na-

ture of their involvement. They provide informed consent before proceeding with the tasks.
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Participants are initially categorized into one of three age groups and one of three AI com-

petency levels based on responses to a preliminary survey assessing their familiarity with

and understanding of AI technologies. This categorization is crucial for ensuring a diverse

representation in the study.

Participants are then randomly assigned to interact with two types of AI systems—‘Good

AI’ and ‘Bad AI’—in a counterbalanced order. This counterbalancing is essential to con-

trol for order effects, ensuring that the experience with one system does not influence the

perception of the other. Each participant engages in a series of tasks designed to simulate

real-world scenarios that require reliance on the AI system’s decision-making capabilities.

These scenarios are embedded in a web-based game interface, which serves both to present

the tasks and to collect participants’ responses seamlessly.

After each interaction with an AI system, participants complete a standardized survey

designed to measure their trust and satisfaction with the AI’s decisions. This feedback is

critical for assessing the impact of AI explainability on user trust.

To ensure consistency across sessions, all interactions are conducted in a controlled en-

vironment, either in a lab setting or remotely, depending on the participant’s location. The

web-based game is accessible on various devices, accommodating different participants’ pref-

erences and ensuring broad accessibility. Each session is designed to last approximately one

hour, with breaks included to mitigate fatigue.

The data from each interaction are automatically captured by the game interface and

stored securely for later analysis. At the end of their session, participants are debriefed,

giving them the opportunity to ask questions and provide feedback about their experience.

This debriefing also serves to reiterate the confidentiality of their responses and the non-

commercial purpose of the study.

Through this detailed and systematic procedure, we aim to gather rich data on how

different demographic groups perceive and trust AI systems under varied conditions. The

insights derived from this data will inform the design of more user-centered AI technologies.
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A data flow diagram of the set up is attached in the appendix as Figure 8. Examples of

the interfaces are also attached in the appendix.

11 Qualitative Findings and Discussion

In this section, we analyze the open-ended discussion conducted at the end of the interac-

tion session. This discussion explored how users perceive explainability and which aspects

of explainability contribute to building trust in the system. Responses were coded using

the Cop-12 metrics, and we developed codes aligned with the broader themes within these

metrics.

The main themes identified are: [1] Content, [2] Presentation, and [3] User-Focused

Aspects. These themes encompass the Cop-12 sub-themes. However, since our focus is

primarily on user-centered factors, we concentrate on the Cop-12 themes most relevant to

this perspective.

Given the granularity of the sub-themes, our analysis emphasizes the impact on the

broader themes without delving deeply into sub-theme coding. When providing participant

responses as examples, participants are anonymized and referred to as P1 (Participant 1),

P2 (Participant 2), and so on. It is worth noting that certain sub-themes may be coded

across multiple responses.

11.0.1 Content

This dimension gauges the content that has been generated by the system. It has dimen-

sions such as correctness (How faithful is the explanation to the black box) , completeness

(How much of the behavior is described in the explanation) , consistency(Same input same

explanation) , continuity (Similar inputs should be explained in similar ways), constrav-

ity(Answers Why/Why Not questions) and co-variate complexity (Human understandable

concepts about feature interaction). With respect to consistency , (P1) noted that the sys-
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tem gave ”...For very similar incomes, it gave different outcomes.” (P1) also noted that

the consistency ”...For very similar incomes, it gave different outcomes.” was lacking. Both

metrics indicated a loss of trust.

11.0.2 Presentation

This dimension talks about how exactly the explanations have been presented to the user. It

has dimensions such as Compactness(length of the explanation) , Composition (Presentation)

and Confidence(Probability information of the system). (P1) talked about how there was no

confidence metric associated with the system ”...I wanna know how confident the machine

itself is with itself.” and how that lowered trust in the system. Regarding Compactness,

(P1) also talked about how detailed the explanations should have been. ”...If it was more

detailed, I would trust the decision more.”

11.0.3 User Focused

This dimension gauges how the explanations are viewed by the user. This involves things

such as the context (How useful is it to the user?) , coherence (Reasonable sounding) and

the controllability of the the explanations (Can the user influence the decisions). (P1) talked

about how ”..I had control over the different parameters I could send into it, but not what

it was giving out.” This highlights that user control is important in building trust in the

system.

12 Conclusion
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Figure 1: Explainability Scale
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Figure 2: Trust Scale
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Figure 3: Example Interface

Figure 4: Example Interface
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Figure 5: Example Interface

Figure 6: Example Interface
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Figure 7: Example Interface

Figure 8: Procedure Diagram
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